Quantum well

Quantum well. Scheme of heterostructure of nanometric dimensions that gives rise to quantum effects.The shaded part with length L shows the region with constant (discrete) valence band.[1]

A quantum well is a potential well with only discrete energy values.

The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy a planar region. The effects of quantum confinement take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e., the carriers can only have discrete energy values.

The concept of quantum well was proposed in 1963 independently by Herbert Kroemer and by Zhores Alferov and R.F. Kazarinov.[2][3]

  1. ^ "Quantum Well Infrared Photon Detectors | IRnova". www.ir-nova.se. Retrieved 2018-09-04.
  2. ^ Kroemer, H. (1963). "A proposed class of hetero-junction injection lasers". Proceedings of the IEEE. 51 (12). Institute of Electrical and Electronics Engineers (IEEE): 1782–1783. doi:10.1109/proc.1963.2706. ISSN 0018-9219.
  3. ^ Zh. I. Alferov and R.F. Kazarinov, Authors Certificate 28448 (U.S.S.R) 1963.

Developed by StudentB